Хелат

Микроэлементы. Цинк

24.01.2017

Физиологическая роль микроэлемента. Цинк (Zn) – микроэлемент, жизненно необходимый для всех живых организмов, в т.ч. и для растений. Его физиологическая роль заключается в активации многих ферментативных реакций, – он является кофактором более 300 ферментов. Цинк участвует в образовании предшественников хлорофилла, входит в состав 40 ферментов, влияет на репродуктивные процессы, метаболизм углеводов, фосфатов и протеинов, образование ауксинов, ДНК, рибосом. Путем участия в поддержании целостности биологических мембран отвечает за устойчивость растений к патогенам. Цинк повышает жаро-, засухо- и морозоустойчивость культур путем стабилизации их дыхания, а также способствует утилизации фосфора.

Симптомы дефицита. Дефицит цинка считается наиболее распространенным среди микроэлементов у сельскохозяйственных культур в масштабах всего мира. Если учитывать, что около трети населения планеты страдает от недостатка этого элемента в питании, то очень важно создать условия, при которых цинк в продуктах растительного происхождения мог бы восполнять этот дефицит.

При недостатке цинка в почве окраска листьев растений становится желто-зеленой, затем они покрываются бурыми пятнами и отмирают. Молодые листья замедляются в росте, они формируются маленького размера, происходит их деформация: они приобретают асимметричную форму, часто имеют волнообразные края. Кроме того, симптомы дефицита цинка определяют по таким внешним признакам как низкорослость растений по причине задержки верхушечного роста (укорочение высоты междоузлий), хлороз листьев между жилками, появление мелких коричневых пятен на верхних листьях и скручивание их.

Наиболее чувствительны к дефициту цинка такие сельскохозяйственные культуры как кукуруза, рис, лен, картофель, гречиха, свекла, клевер. По сравнению с ними зерновые не столь зависимы от этого микроэлемента. Но, учитывая, что почти половина мировых площадей, занятых зерновыми культурами, имеют недостаточное количество доступного цинка, злаки не могут получить этот микроэлемент в достаточном количестве. В свою очередь, это приводит к потере урожайности.

Причины и условия возникновения дефицита цинка. Условия, при которых возникает дефицит цинка у растений, включают в себя: общее низкое содержание микроэлемента (или его соединений) в почве; слишком большое или маленькое (торфяные почвы) количество органических веществ в грунте; сильное защелачивание почв, а также карбонатные и произвесткованные грунты; низкая температура почв; их заболоченность; почвы с высоким уровнем фосфора; почвы песчаные или засоленные.

Недостаток цинка часто наблюдается на нейтральных и слабощелочных карбонатных почвах. В кислых грунтах цинк более подвижен и доступен растениям, поэтому дополнительное внесение цинкосодержащих удобрений может быть нецелесообразным. Потребление цинка сильно зависит от фосфатов. Их высокое содержание затрудняет поступление этого микроэлемента в растения. Кроме того, цинк может образовывать хелатные соединения с органическими веществами почвы, поэтому нельзя длительно проводить обогащение грунта большим количеством навоза. Это может стать причиной дефицита цинка у растений. К тому же внесение органики существенно повышает урожайность, что также приводит к значительному выносу микроэлементов из почвы.

Среднее содержание цинка в грунтах – 50 мг/кг. Оно может колебаться в пределах от 10 мг/кг до 570 мг/кг, но в почвенном растворе этот показатель не превышает 270 мг/кг. Концентрация микроэлемента в растениях составляет 1 – 80 мг/кг сухой массы. Например, яблоки содержат 1,2 мг цинка, а листья салата – до 73 мг/кг. Вынос цинка с урожаем полевых культур составляет 0,06 – 2,25 кг/га, а зерновых – от 0,06 до 0,3 кг/га.

Виды цинковых удобрений и их применение. В качестве цинковых удобрений используются три различных типа химических соединений: неорганические, синтетические хелаты и органические комплексы. Применение синтетических хелатов наиболее эффективно, но для многих культур форма внесения удобрений не играет большой роли. Поэтому в таких случаях используют неорганические соли, что более выгодно экономически. Из неорганических цинкосодержащих соединений широко применяют оксид цинка, карбонат цинка, сульфат цинка (растворимость в воде составляет до 98%), нитрат цинка и хлорид цинка. Наиболее перспективный метод в современной практике – это включение цинка в состав гранул сложных удобрений NP и NPK. Такая технология позволяет получить равномерное распределение микроэлемента в почве. Для повышения количества цинка в почве применяют также свиной навоз и птичий помет, которые содержат достаточное количество этого элемента.

Предпосевная обработка семян. Замачивание семян в цинкосодержащем растворе улучшает их прорастание, последующий рост и развитие растений, а также повышает урожайность. Рекомендуется для выращивания культур в почвах со средним дефицитом цинка. Для грунтов, бедных этим микроэлементом, такая обработка семян не будет иметь должного эффекта. Чаще всего для предпосевной обработки используют сульфат цинка (0,2 – 2,0 кг/т) или цинковые полимикроудобрения (до 4 кг/т).

Внесение цинковых удобрений в почву. Целесообразно применение цинкосодержащих удобрений в случае, если количество подвижных форм цинка в грунте не превышает 3 мг/кг (для минеральных почв) или 10 мг/кг (для торфяных почв). При основном внесении удобрения должны заделываться в почву для повышения доступности микроэлемента, поскольку цинк в почве малоподвижен. Необходимо также, чтобы водорастворимость удобрений была не менее 40 – 50%. Разовое внесение в почву 20 – 30 кг/га сульфата цинка позволяет обеспечить потребность растений в этом микроэлементе в течение 4 – 5 лет. Но количество удобрений и периодичность их внесения зависят во многом от типа грунта. Например, карбонатные почвы требуют более высоких норм расхода и сокращения сроков периодичности внесения.

Очень эффективен метод точечного внесения цинкосодержащих удобрений непосредственно в прикорневую зону, т.н. ленточный или припосевной способ. В этом случае для однолетних культур вносят ежегодно по 1 – 2 кг/га цинка, а для синтетических хелатов эта норма составляет 0,5 – 2,2 кг/га.

Внекорневые подкормки. Цинк, внесенный в почву, оказывает более существенное влияние на урожайность культур. Но для быстрого устранения симптомов дефицита этого микроэлемента применяют внекорневые подкормки. С этой целью используют 0,05 – 0,1% раствор сульфата цинка. Если корневая система культуры располагается в более глубоких слоях почвы, следует учитывать малоподвижность цинка в растении и дополнять внекорневую подкормку листовой. В этом случае при опрыскивании растения к раствору сульфата цинка добавляют карбамид, благодаря чему улучшается поступление цинка в растение. Во время вегетационного периода рекомендуется повторно проводить такие подкормки и опрыскивание.

Для большинства культур внекорневую подкормку проводят в период бутонизации – начала цветения. Для злаковых культур при внекорневых подкормках используют сернокислый цинк (содержание микроэлемента 22%), норма расхода составляет 150 – 200 г/га посевов. Плодовые культуры опрыскивают весной по распустившимся листьям (200 – 500 г cульфата цинка на 100 л воды) с добавлением 0,2 – 0,5 кг гашеной извести для нейтрализации кислотности и предотвращения возникновения ожога листьев. Для овощных культур внекорневые подкормки проводят с использованием хелатных форм и сульфатом цинка. Практическое применение хелатов цинка доказало их трех – пятикратное преимущество над его неорганическими солями. При наличии визуальных признаков дефицита цинка требуется внести не менее трети от уровня сезонного потребления этого элемента культурой.

Хелатная терапия. Хелатирование, хелирование

Хелатная терапия (хелирование) является медицинской процедурой, которая включает в себя внутривенное введение хелатирующих агентов для удаления тяжелых металлов из организма человека через мочеиспускание. Хелатная терапия является одним из эффективных методов лечения от отравления тяжелыми металлами, в частности свинцом, ртутью, кадмием цинком, мышьяком и пр, а так же превышением нормы железа в связи с заболеванием крови и / или многочисленными переливаниями крови.

Было доказано, что это интоксикая тяжелыми металлами может быть источником многих заболеваний, при которых классическая медицина предлагает только симптоматическое лечение, не признавая влияние на здоровье хронической длительной интоксикации.

При загрязнение организма тяжелыми металлами человек испытывает весьма разнообразные симптомы. Есть некоторые металлы, вызывающие разную степень болезненности при остром и хроническом течение заболевания. Тяжелые металлы это термин, используемый для группы элементов, имеющих особые весовые характеристики. Они находятся на «тяжелом» конце периодической таблицы элементов. Некоторые тяжелые металлы, такие, как кобальт, медь, железо, марганец, молибден, ванадий, стронций, цинк нужны для человеческого здоровье в минимальных дозах. Ряд других металлов не является необходимым для нашего организма и может быть вреден для здоровья при попадании в него в большом количестве. К ним относятся кадмий, сурьма, хром, ртуть, свинец и мышьяк — три последние являются наиболее распространенными в случаях отправления тяжелыми металлами.

Каким путем тяжелые металлы попадают в организм человека? Из внешних источников, таких, как вода, в которую попадают продукты промышленной переработки и прочей жизнедеятельности человека. Токсикация мышьяком возможна через вдыхание спрея от насекомых, контакт поверхности кожи (например с олифой) и даже через питьевую воду. Токсикация тяжелыми металлами, как например свинцом может воздействовать на нервную систему, желудочно-кишечный тракт, сердечно-сосудистую систему, кроветворение, деятельность почек и репродуктивной системы.

Ряд тяжелых металлов можно отнести к химическим канцерогенам. Среди них : мышьяк, никель, кадмий бериллий, хром. Потенциально канцерогенными являются : кобальт, свинец, ртуть и некоторые другие металлы. Понятие «канцерогенность металла» относится не к элементу как таковому в виде простого вещества, а к его физико-химическому состоянию. Канцерогенез – это способность вещества (в данном случае металла) проникать в клетку и реагировать с молекулой ДНК, вызывая хромосомные нарушения клетки. Канцерогенез зависит, как от механизма поступления канцерогенных веществ в клетку, так и от их обещего количества в клетке.

Человеческий организм не может самостоятельно выводить некоторые металлы, которые с течением времени накапливаются, порой до критического уровня, что мешает нормальному функционированию организма.

Симптомы хронической интоксикации тяжелыми металлами :

— Желудочно-кишечные расстройства, пищевая непереносимость / аллергия, проблемы со зрением, хроническая усталость, снижение иммунитета, головные боли и другие. Симптомы настолько неопределенные, что при хронической интоксикации трудно поставить диагноз на основе одной симптоматики.
Наша хелатная терапия предназначена НЕ для пациентов с острым отравлением тяжелыми металлами (это компетенция скорой помощи в токсикологической клинике), а для пациентов с хронической интоксикацией. Необходимость проведения хелатной терапии определяется после предварительной диагностики.

Для каких заболеваний хелатотерапия может послужить хорошей ПРОФИЛАКТИКОЙ ?

  • Аутоимммунные заболевания
  • Повторяющиеся инфекционные заболевания
  • Онкологические заболевания. Разумеется хелатотерапия это не панацея, но в контексте онкологии она является хорошей профилактикой онкологии т.к. выводит из организма потенциально онкогенные тяжелые металлы, такие как кадмий, мышьяк и пр. Так же хелатная терапия используется в программах восстановления после онкологии
  • Ревматологические заболевания
  • Шум в ушах и головокружение
  • Хроническая усталость
  • Глазные заболевания, связанные с интоксикацией токсичными металлами
  • Болезни Паркинсона и Альцгеймера.

Как проводится хелатная терапия?

Перед хелатированием проводится диагностика на базе расширенного анализа крови и мочи для определения уровня тяжелых металлов в организме.

Хелатная терапия проводится специально подготовленным врачом. Она сопряжена с изменением образа жизни и привычек питания. После лечения пациенту назначаются витаминно-минеральные добавки для компенсации потери, вызванной детоксикацией. Так же наш доктор дает рекомендации по оптимизация питания для нормализации работы ЖКТ и кишечной флоры с целью укрепления иммунитета. Плюс к вышесказанному для стимуляции иммунной системы наш доктор может назначить инъекции антиоксидантов, таких как глутатион (мощный антиоксидант, защищающий клетки от окислительного стресса).

Наиболее распространенными хелаторами тяжелых металлов, назначенными врачами, являются EDTA (этилендиаминтетрауксусная кислота), DMPS (димеркаптопропансульфонат) и DMSA (димеркаптосукцинова кислота)

Одним из наиболее эффективных методов оценки удержания органами и тканями тяжелых металлов является сравнение уровня тяжелых металлов в моче до и после введения фармацевтического хелатирующего препарата, такого как EDTA, DMSA или DMPS. Поэтому мы всегда рекомендуем нашим пациентам сделать анализ мочи на следующий день после хелатной терапии. Он может показать, как снижение уровня тяжелых металлов, так и его повышение (это происходит в случае большого скопления тяжелого металла в костях, тканях, головном мозге). В случае, если повторный анализ мочи показывает повышение уровня тяжелых металлов, будет рекомендован курс хелатной терапии (не менее 4-5 процедур, не чаще 1 раза в неделю). Как уже было сказано выше, любая хелатная терапия сопровождается либо витаминной капельницей, либо таблетированными витаминами и БАДами.

Хелатная терапия включена в следующие обследования :

ЭкспертЗдравСервис
Ресурс для организаторов здравоохранения

Хелатные вещества (соединения) – соединения минералов и микроэлементов с органическими молекулами или относительно крупными органическими соединениями, например, с углеводами, липидами, протеинами (в том числе с аминокислотами). Поступление в организм хелатных форм (органических) соединений способствует адекватному (по фактической потребности организма) усвоению минералов и микроэлементов. Это обусловлено тем, что в процессе эволюционного пути филогенеза человека именно органические соединения большинства микроэлементов и минералов вошли в систему ферментативного «опознавания» (свой–чужой) и обусловили наличие механизмов адекватного количественного усвоения при позитивном результате идентификации вещества. В иных случаях, чаще всего, в организме усваиваются все микроэлементы, поступившие в организм в неорганическом (не хелатном) соединении (без адекватной оценки «надо – не надо»), либо не усваиваются совсем.

Хелатирование – процесс, в котором минеральные вещества связываются с аминокислотами и, таким образом, переводятся в более усвояемую форму. Такие элементы, как железо, кальций, хром, цинк лучше усваиваются именно в форме хелатов. Классические хелаты – это гемоглобин, где атом железа окружен белковой оболочкой, или хлорофилл, где вместо железа – магний.

Современные технологии позволяют производить уже хелатированные минералы, что максимально повышает их усваеваемость и, вместе с тем, снимает риск передозировки. Невостребованный хелатированный комплекс естественным путем выведется из организма. Препараты с хелатированными минералами стоят дороже, но они гарантируют достаточное усвоение и безопасность применения. Большинство предлагаемых на рынке комплексов содержат окислы и соли металлов. При приеме таких препаратов в кишечнике может происходить произвольное хелатирование минералов белками пищи. Но часть из них связывается с белками слишком сильно, поэтому организм не способен использовать минерал в нужном количестве.

Холестерин – полициклический спирт из группы стеринов. Синтезируется преимущественно в печени. Важная функция – транспорт жиров. Сам холестерин транспортируется в крови, соединяясь с белками; образуются фракции липопротеинов низкой или высокой плотности. Липопротеины низкой плотности (ЛНП) – «плохой» холестерин, имеющий высокий атерогенный потенциал. Липопротеины высокой плотности (ЛВП), содержащие липиды высокой плотности, переносят 20 % холестерина; это «хороший» холестерин. Эта форма холестерина способна превращаться в витамин Д, способствует метаболизму углеводов и является основой синтеза стероидных гормонов, принимает участие в синтезе мужских половых гормонов, является структурным компонентом клеточных мембран. Важнейшее клинико-профилактическое и прогностическое значение имеет процентное соотношение ЛНП и ЛВП. Уменьшение процентной доли ЛВП автоматически говорит о повышении уровня ЛНП и, значит, повышении риска атерогенеза, что является фактором риска цереброваскулярных и кардиоваскулярных катастроф.

Совет: добавьте в закладки, чтобы не потерять эту страницу.

Пожалуйста, расскажите коллегам об этом материале. Возможно, это именно то, что им необходимо в работе:

Tweet

Нравится

Опубликовано в составе монографии:

УДК 616-084

ББК 51.1(2)5

А23

Хелатные удобрения: строение, характеристика, действие и поведение, применение

Хелатные удобрения уже около полустолетия применяются в агротехнике. Довольно давно освоен и массовый выпуск хелатированных удобрений для личных подсобных хозяйств. Эффект от применения хелатов элементов питания растений в ЛПХ оказался весьма значительным, а более чем 20-летний опыт огородников и садоводов подтвердил их безвредность и экологичность. Однако в ходе продвижения востребованного товара достоинства данного рода продукции порой чрезмерно превозносятся, а рекомендации по ее применению оказываются плохо согласованы с реальными свойствами хелатов. Производители, как правило, дают вполне обоснованные инструкции для своих препаратов, но сводки общих качеств и областей применения оказались во власти популярных источников интернета, описания в которых нередко туманны и далеки от действительности либо просто списаны с рекламных проспектов. Настоящая публикация призвана до некоторой степени восполнить этот досадный пробел, поскольку удобрения в форме хелатов не таблетки из фантастики, заменяющие завтраки, обеды и ужины, а конкретные питательные смеси или монопрепараты, имеющие определенные достоинства, недостатки и сферы применения.

Что такое хелаты

Что такое и зачем нужны хелаты? Название соединений этого типа происходит от chela – клешня по-латыни. Хелаты – особый тип веществ, внешне и по физико-химическим параметрам подобным химическим соединениям в общепринятом понимании. Но строение хелатов принципиально иное. Хелаты находят широкое применение в самых различных областях – от производства оружия массового поражения до фармацевтики, но мы далее ограничимся их свойствами и особенностями использования в качестве удобрений.

Хелатные удобрения

Общие понятия

Пример строения хелатного соединения

Пример строения хелата показан на рис. справа. Сильный катион (как правило, металла) как бы проваливается в «лунку» органического соединения (в данном случае этилендиаминтетрауксуной кислоты, EDTA), не образуя с ней настоящей химической связи. Вещества, способные хелатировать («цапать») ионы металлов, называются хелатирующими агентами или хелатообразователями. Далее, краткости ради, будем именовать их просто агентами. В свою очередь, «клешня» не дает иону «выпустить» свой электрический заряд и тем самым в полной мере проявить свои химические свойства. Молекулу-«клешню», облекающую ион в хелате, называют лигандом. Металл также влияет на лиганд, т.к. в процессе хелатообразования своим электрическим полем меняет его пространственную конфигурацию (см. рис. ниже), от чего существенно зависят свойства органических соединений. Лиганд в хелате и свободная молекула того же соединения это в сущности разные вещества, поскольку по свойствам отличаются сильнее пространственных изомеров. В результате хелат хорошо растворимого хелатообразователя и активного металла может оказаться химически весьма инертным и нерастворимым, а по виду совершенно непохожим на то и другое. Именно таким оказался первый синтетический хелат, полученный в 1905 г. Л. А. Чугаевым.

Схема образования хелата этилендиаминтетруксусной кислотой (EDTA)

Хелаты для удобрений

EDTA очень часто используется для промышленного приготовления удобрительных хелатов, т.к. прочно держит ион и конечные продукты весьма стабильны. Кроме того, этилендиаминтетрауксусная кислота может хелатировать и некоторые неметаллические микроэлементы питания растений, напр. бор. Чтобы хелат EDTA распался, нужно разрушить лиганд или «выдрать» из «клешни» металл. Так, напр., жидкие хелатированные удобрения практически все делаются на основе EDTA. Однако стойкость препарата может быть и помехой, если питательное вещество нужно отдать быстро и/или сквозь преграду, напр. при внекорневой подкормке, см. далее. Поэтому в агротехнике применяются и хелаты с двумя и более молекулами хелатирующих агентов, образующих лигандную оболочку. Используются для этого агенты, поляризованные молекулы которых имеют С-образную или (-образную конфигурацию, напр. лимонная кислота. Их стойкость на хранении ниже, а в растворе фактически нулевая, его нужно вносить немедленно по приготовлении. Но зато такие хелатообразователи не содержат азота и др. балластных или нежелательных в определенных условиях элементов; в почве, на воздухе и свету они быстро распадаются до углекислого газа и воды.

Схемы строения солевого минерального удобрения и хелатного с оболочкой из нескольких лигандов показаны на рис. ниже:

Схемы строения молекулы минерального удобрения и хелатного на основе слабого хелатирующего агента

Солевое удобрение это катион – элемент питания E и некоторый неорганический остаток R. Связаны они сильной химической связью (как правило ионной), т.е. валентные электроны E и R образуют общую оболочку. Слабые хелатообразователи ChA берут металл уже не в «клешню», а в кольцо, «дыру» в лигандовой оболочке L. Вся «конструкция» держится уже фактически кулоновскими силами электрического притяжения, в то время как в «клешнях» сильных хелатирующих агентов ионы удерживаются силами, примерно равными таковым координационных химических связей; существенную роль в этом играют квантовые эффекты.

Сравнение сил

Хелатные соединения в целом менее стойки, чем обусловленные «нормальными» химическими связями – они распадаются под влиянием различных внешних факторов: в химически активной среде, под воздействием тепла, света и даже просто на хранении. Поэтому естественных хелатов, напр., в виде горных пород, нет. Но скорость распада хелатов с сильными агентами на порядок-два ниже, чем со слабыми. Это уже качественное различие. Однако в том другом случае «захваченный» ион начинает действовать с задержкой относительно времени внесения удобрения. Именно это обстоятельство важно для агротехники. Поведение вернувшихся к исходной конфигурации молекул агента может быть различным, что также имеет значение.

Поведение в почве

Удобрения на хелатной основе применяются в основном поливом под корень и для подкормок по листьям; реже – в форме водорастворимых гранул или микрокапсул. Плодородная почва – среда влажная, слабокислая или слабощелочная; нейтральные почвы с pH=(6,5-7,5) встречаются как исключение. Вследствие общих свойств хелатов (см. выше) поведение в ней хелатных удобрений существенно отличается от такового солевых.

Поведение в почве солевого минерального и хелатного удобрения

Солевое удобрение во влажной среде (слева на рис.) немедленно диссоциирует на ионы питательного элемента и остатка. Последний также может содержать питательные элементы или микроэлементы, напр., в калиевой селитре, суперфосфате, калимагнезии, сульфате магния и др. Поскольку ионы весьма подвижны, часть элементов питания неизбежно теряется. Диссоциация это просто-напросто залповый выброс. Концентрация ионов поначалу оказывается слишком высокой, что и понуждает их «разбредаться» как можно скорее. Оказывается возможной ситуация, когда растения недокормлены, а почва вне их объемов питания перенасыщена удобрением, что никак не идет на пользу экологии. Если дозировать внесение по максимуму, то вероятны и химические ожоги корней, и накопление посторонних веществ в плодах (чаще всего – нитратов).

Примечание: в 70-х годах прошлого века Франция и ряд других европейских стран еле пережили «фосфатную катастрофу». Смыв остатков фосфатов с полей вызвал бурное цветение водоемов. Рыба передохла и завонялась, водные биоценозы погибли. Электростанции и предприятия останавливались, водоснабжение и канализация работали с перебоями оттого, что микроводорослями забивались водозаборные и очистные устройства.

Хелатные соединения в почве не диссоциируют, а распадаются на компоненты (справа на рис. выше) прежде всего под влиянием кислотности среды. Распад хелатов идет постепенно, т.к. кислотность почвы обусловлена гуминовыми веществами (ГВ). Расходуются на него почвенные кислоты, в первую очередь фульвовые. Кислотность падает, распад хелатов замедляется, но интенсифицируются процессы образования ГВ. Это снова провоцирует распад хелатов и т.д. Благодаря такому динамическому равновесию питательный элемент выделяется со скоростью, как бы «приноравливающейся» к текущим условиям. В результате вероятность ожогов корней и перекармливания растений уменьшается многократно.

Затем, катионы элемента питания, «не видя» анионов-партнеров, образуют комплексные соединения с другими почвенными кислотами – малоподвижными гуминовыми. Микроток в плодородном слое направлен к «насосам» – корням. Гуматы концентрируются в корневом коме, а вне объема питания их концентрация падает. Это по законам химического равновесия сдвигает почвенные процессы в сторону образования гуминовых кислот. Подвижные фульвовые связываются остатками лигандов и теряют способность быстро и далеко «растаскивать» питательные вещества. В целом же почва лучше сохраняет плодородие и меньше выщелачивается.

EDTA или «лимонка»?

Хелаты на слабых агентах в достаточно тучных и увлажненных почвах распадаются очень быстро. Удобрения на их основе в таких условиях применимы для лечебных (напр. от хлороза) или срочных питательных подкормок, но в качестве текущих сезонных мало эффективны, а вероятность перекармливания растений приближается к таковой минеральными солями.

Удобрения, хелатированные EDTA, на кислых и слабокислых почвах дозируют выделение элементов питания вполне приемлемо. Но один из продуктов их распада – этилен. Этот легкий газ – фитогормон, ускоряющий созревание плодов. Что и может произойти в ущерб их товарным качествам – крупности, сочности, вкусу. В общем, на своем участке начинать применение хелатных удобрений нужно с минимальных рекомендованных инструкцией доз, а далее вносить проверенные.

Примечание: в искусственные субстраты для растений лучше вносить удобрения, хелатированные EDTA. При более свободном, чем в плодородный грунт, доступе воздуха, хелаты этилендиаминтерауксусной кислоты распадаются быстрее, чем в земле, но легких хелатирующих агентов слишком быстро.

Поведение при опрыскивании

Наиболее эффективны удобрения в хелатной форме для внекорневых подкормок как транспортировочные агенты элементов питания, см. рис.:

Действие хелатного удобрения при внекорневой подкормке

Ион минерального питательного вещества как правило «отвергается» защитной восковой оболочкой листа, без нее растения «сгорели» бы от обычной пыли. Органический лиганд как бы раздвигает восковую пленку, а затем «захлопывает» ее за собой. Но здесь опять встает вопрос: сильные или слабые хелатообразователи? Многие сильные, и EDTA в том числе, физиологическим циклам в растении мало или совсем не нужны. Растительный организм их быстро нейтрализует, но в результате получаются тот же этилен или свободный азот. Так что внекорневые хелатные подкормки лучше проводить удобрениями на слабых агентах. Ххотя технологически они менее удобны, но, как правило, жизненно необходимы растениям сами по себе. Напр., лимонная кислота, наряду с янтарной – ключевые звенья т. наз. цикла трикарбоновых кислот, чем и объясняется стимулирующее действие удобрений, хелатированных ею.

Примечание: дополнительно о свойствах и особенностях хелатных удобрений см. видео:

Видео: хелатные удобрения — что это такое и для чего нужны?

Когда возможно хелатирование

Химики сначала думали, что хелатировать возможно только металлы. Однако практическая важность хелатов заставляет изыскивать способы «загнать в клешню» и неметаллы. Некоторые, и немалые, успехи в этом налицо, но до технологий хелатирования любых ионов и атомов еще далеко. Поэтому важный фактор, ограничивающий применение хелатных удобрений – сама возможность хелатирования элементов питания растений. Их потребность по сезону вегетации в тех или иных питательных веществах показана на рис.:

Обощенные потребности растений в элементах питания по фазам вегетации

Касательно возможности связывания в хелатах питательные элементы распределяются таким образом:

  1. основные NPK – азот не хелатируется. Лабораторные хелаты фосфора известны, но в агротехнике неприменимы. Калий хелатируется, но такому активному иону нужны очень прочные и стойкие «клешни», что существенно ограничивает применение калийных хелатов на удобрение;
  2. мезоэлементы – магний и кальций хелатируются EDTA. Соотв. хелаты имеются в продаже как отдельные препараты и применяются по потребности как дополнительные подкормки в случае противопоказаний к основным или микроэлементам;
  3. микроэлементы – EDTA хелатируются все. В последнее время в продаже появились и хелаты бора как отдельный препарат. Такие важные для лечебных и внеплановых подкормок элементы, как железо и медь, хелатируются слабыми агентами (лимонной кислотой) в кустарных условиях, см. видеоруководство:

Видео: приготовление халатов самостоятельно из железного и медного купороса

Примечание: бор и некоторые другие микроэлементы малоподвижны во внешних средах, но могут вызывать химические ожоги листьев. Дать бора по листьям сразу по потребности растения, он его обожжет. Внести под корень – практически весь потеряется, или корни сожжет, если передозирован. Внесение в хелатной форме решает проблему – в почве хелат выделит его постепенно, а на листе «протащит» сквозь кутикулу без вреда для растения.

Применение хелатных удобрений

И, наконец, один их главных факторов, определяющих применимость хелатных удобрений – их иная, чем у исходных компонент, химическая активность. Среди элементов питания растений известны пары антагонистов, т.е. при совместном внесении мешающих растениям усваивать оба. Классические примеры – фосфор и калий, калий и кальций. Хелатирование одного их антагонистов устраняет проблему – пока хелат «соберется» выделять свой элемент, растение достаточно «наестся» его антагониста. Исходя из всех описанных выше свойств хелатов, удобрения на их основе применимы в таких случаях:

  • Комплексные хелатные удобрения – основные NPK даются солями, а мезо- и микроэлементы хелатами. Это устраняет антагонизм элементов и сокращает трудозатраты на обработку – вместо двух или нескольких внесений требуется всего одно. В больших механизированных агрохозяйствах также существенно экономится топливо и ресурс техники.
  • Дражирование (инкрустация) семян удобрениями совместно с протравливанием. В сухой плотной среде хелаты EDTA не активны. Добавка хелатированных удобрений для проростков при протравливании семенного материала позволяет существенно увеличить урожайность сравнительно с применением чистых минеральных соединений, см. напр. табл.:

Влияние на урожайность пшеницы добавок хелатных удобрений к протравителям семян

  • Микроудобрения в хелатных формах. Исключается антагонизм микроэлементов и ожоги листьев. При необходимости давать лечебные подкормки (железо, магний и др. от хлорозов) можно давать максимальные дозы. Хелатные микроудобрения для ЛПХ – доминирующий продукт в данном сегменте рынка, см. ролик:

Видео: о микроудобрениях в хелатной форме

  • Сезонные подкормки по листьям хелатными микроудобрениями. Стимулируют активизируют растения. Основные подкормки не отменяются, но вносятся в меньших дозах, т.к. лучше усваиваются растениями. Общие расходы на удобрения снижаются, экологическая чистота, потребительские качества и количество урожая увеличиваются. В целом хелатные микроподкормки нужны растениям прим. так же, как витамины нам, см. сюжет:

Видео: о хелатных удобрениях как «витаминах» для растений

Хелаты и органика

Хелатированные удобрения вполне применимы в органическом земледелии или в процессе перехода к нему, т.к. исключают залповый выброс в почву активных агентов, нарушающих сложившийся в ней биоценоз. Исключение – заправка почвы натуральным перепревшим (не гранулированным) навозом, навозные парники, теплицы и теплые грядки. Эти способы использования земли сами по себе обеспечивают в ней должный баланс гуматов и фульватов. Избыток хелатов его нарушит, что может вызвать выщелачивание и защелачивание почвы. Если навозная заправка открытого грунта производилась осенью, хелаты на этой площади применимы с весны; если же заправка было весенняя – на следующий сезон. А вот вносить хелатированное питание растений после птичьего помета можно уже через месяц, поскольку помет птиц не влияет коренным образом на баланс почвенных кислот.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *